Pressemeldungen

Neue Methode zur Erzeugung eines extrem schweren Wasserstoffisotops am Mainzer Teilchenbeschleuniger MAMI

Neue Methode zur Erzeugung eines extrem schweren Wasserstoffisotops am Mainzer Teilchenbeschleuniger MAMI

Erzeugung und Vermessung des extrem neutronenreichen Wasserstoffisotops ⁶H gelingt erstmals an einem Elektronenstreuexperiment / Ergebnis weist auf unerwartet starke Wechselwirkung zwischen Neutronen innerhalb des Kerns hin

30.04.2025

©: Ryoko Kino / Josef Pochodzalla

Der A1-Kollaboration am Institut für Kernphysik der Johannes Gutenberg-Universität Mainz ist es zusammen mit Wissenschaftlerinnen und Wissenschaftlern aus China und Japan erstmals gelungen, in einem Elektronenstreuexperiment eines der neutronenreichsten Isotope, Wasserstoff-6, zu erzeugen. Das Experiment an der Spektrometeranlage am Teilchenbeschleuniger Mainzer Mikrotron (MAMI) präsentiert eine neue Methode zur Untersuchung leichter neutronenreicher Kerne und stellt bisherige Auffassungen über Vielnukleon-Wechselwirkungen infrage. „Diese Messung konnte nur dank der einzigartigen Kombination aus der exzellenten Qualität des MAMI-Elektronenstrahls und den drei hochauflösenden Spektrometern der A1-Kollaboration durchgeführt werden“, kommentiert Prof. Dr. Josef Pochodzalla aus dem Institut für Kernphysik. Am Experiment beteiligt waren Forschende der Fudan University in Shanghai (China) sowie der Tohoku University Sendai und der University of Tokyo (beide Japan). Die experimentelle Arbeit wurde von dem Doktoranden Tianhao Shao geleitet und in dem renommierten Fachmagazin Physical Review Letters veröffentlicht.

Weiterlesen

Johannes Gutenberg-Universität Mainz erhält weitere Förderung zur Beteiligung am Mu3e-Experiment

Forschende des Mainzer Exzellenzclusters PRISMA+ sind an internationalem Großprojekt zur Suche nach "neuer Physik" beteiligt

15.04.2025

Foto/©: Niklaus Berger

Die Deutsche Forschungsgemeinschaft (DFG) hat ihre Förderung des Mu3e-Experiments um weitere vier Jahre verlängert. Das Projekt, an dem Forschende der Johannes Gutenberg-Universität Mainz (JGU), der Universität Heidelberg und des Karlsruher Instituts für Technologie (KIT) beteiligt sind, wird damit ab dem 1. Mai 2025 mit 5,6 Millionen Euro gefördert. Die Verlängerung der DFG-Forschungsgruppe 5199 ermöglicht den Wissenschaftlerinnen und Wissenschaftlern, die Suche nach der Verletzung der Lepton-Familienzahl fortzusetzen.

Das Mu3e-Experiment, das am Paul Scherrer Institut (PSI) in Villigen in der Schweiz durchgeführt wird, ist ein internationales Vorhaben, an dem auch Forschende aus der Schweiz und Großbritannien beteiligt sind. Ziel des Projekts ist es, einen sogenannten Lepton-Flavor-verletzenden Zerfall eines positiven Muons zu beobachten, bei dem das Muon in zwei Positronen und ein Elektron zerfällt. Da dieser Zerfall im Standardmodell der Teilchenphysik nicht vorgesehen ist, wäre die Beobachtung dieses Prozesses ein deutliches Indiz für neue Physik.

Weiterlesen

21 Tonnen schwerer Magnet in neuen Teilchenbeschleuniger MESA eingebaut

Supraleitende Kernkomponente für internationales P2-Experiment in unterirdischer Halle in zehn Metern Tiefe installiert

25.11.2024

Foto/©: Twain Wegner

Eines der Leuchtturmprojekte des Exzellenzclusters PRISMA+ der Johannes Gutenberg-Universität Mainz (JGU) ist der Bau des neuen, energierückgewinnenden Teilchenbeschleunigers MESA (Mainz Energy-recovering Superconducting Accelerator), der zukünftig Experimente mit bisher unerreichter Präzision ermöglichen wird. Eines der Hauptexperimente an MESA, P2, wird durch die Messung des sogenannten schwachen Mischungswinkels eine Schlüsselrolle bei der Erforschung der "neuen Physik" – Physik jenseits des Standardmodells der Teilchenphysik– spielen. Die zentrale Komponente des P2-Experiments, eine supraleitende Magnetspule mit einem Durchmesser von vier Metern und einem Gewicht von 21 Tonnen, ist jetzt auf dem Campus der JGU angeliefert und in den MESA-Teilchenbeschleuniger eingebaut worden. Der Magnet wurde in Vannes, Frankreich, hergestellt und am vergangenen Donnerstag nach Mainz geliefert. "Wir haben fast fünf Jahre lang mit der Firma SigmaPhi zusammengearbeitet, um die Herausforderungen zu meistern und das hochmoderne Design für unser Experiment zu realisieren", sagt Prof. Dr. Frank Maas, Sprecher des P2-Experiments, das zurzeit von einer Kollaboration aus Physikerinnen und Physikern aus Deutschland, Frankreich, Kanada und den USA aufgebaut wird. "Ein solcher Solenoidmagnet wird zum ersten Mal für Experimente dieser Art eingesetzt. Sein großer Durchmesser ermöglicht es, besonders hohe Teilchenraten aufzunehmen. Die Größe des Magneten hat aber auch eine besondere Herausforderung in der Konstruktion und Produktion dargestellt."

 

Weiterlesen

Pierre Capel als Fellow der American Physical Society ausgezeichnet

Große Ehre für theoretischen Physiker der JGU und Mitglied des Exzellenzclusters PRISMA+

08.10.2024

Prof. Dr. Pierre Capel, Professor für theoretische Physik am Institut für Kernphysik der Johannes Gutenberg-Universität Mainz (JGU) und Mitglied deren Exzellenzclusters PRISMA+, ist zum Fellow der American Physical Society (APS) gewählt worden. Damit wird seine Anwendung von Wenig-Körper-Methoden bei der Untersuchung von Kernreaktionen mit exotischen Kernen ausgezeichnet. Das Fellowship-Programm der APS ist eine Auszeichnung für Mitglieder, die durch herausragende Forschung und Publikationen einen bedeutenden Beitrag zur Weiterentwicklung des Fachs geleistet haben. Jedes Jahr werden deutlich weniger als ein Prozent der Mitglieder der Gesellschaft zu Fellows gewählt.

Weiterlesen

Neuer SFB 1660: Hadronen und Kerne als Entdeckungsinstrumente

Sonderforschungsbereich am Institut für Kernphysik der JGU sucht nach neuen physikalischen Phänomenen durch ein besseres Verständnis der Prozesse der starken Wechselwirkung

31.05.2024

Die Deutsche Forschungsgemeinschaft hat heute die Einrichtung eines neuen Sonderforschungsbereichs (SFB) an der Johannes Gutenberg-Universität Mainz (JGU) bewilligt. Der SFB 1660 "Hadrons and Nuclei as Discovery Tools" zielt darauf ab, die starke Wechselwirkung zu verstehen, die zu Prozessen führt, an denen Hadronen, Kerne und Atome beteiligt sind. Damit sollen grundlegende Fragen beantwortet werden: Welche physikalischen Phänomene treten jenseits des Standardmodells der Teilchenphysik (SM) auf und wie können wir sie messen und beschreiben? Sprecherin und Sprecher des neuen Sonderforschungsbereichs sind Prof. Dr. Concettina Sfienti (Experiment) und Prof. Dr. Marc Vanderhaeghen (Theorie) vom Institut für Kernphysik der JGU.

Weiterlesen